The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Kids Run the Darndest Experiments: Causal Learning in Children with Alison Gopnik - #548
27 Dec 2021
Today we close out the 2021 NeurIPS series joined by Alison Gopnik, a professor at UC Berkeley and an invited speaker at the Causal Inference & Machine Learning: Why now? Workshop. In our conversation with Alison, we explore the question, “how is it that we can know so much about the world around us from so little information?,” and how her background in psychology, philosophy, and epistemology has guided her along the path to finding this answer through the actions of children. We discuss the role of causality as a means to extract representations of the world and how the “theory theory” came about, and how it was demonstrated to have merit. We also explore the complexity of causal relationships that children are able to deal with and what that can tell us about our current ML models, how the training and inference stages of the ML lifecycle are akin to childhood and adulthood, and much more! The complete show notes for this episode can be found at twimlai.com/go/548
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast