The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Predictive Disease Risk Modeling at 23andMe with Subarna Sinha - #436
11 Dec 2020
Today we’re joined by Subarna Sinha, Machine Learning Engineering Leader at 23andMe. 23andMe handles a massive amount of genomic data every year from its core ancestry business but also uses that data for disease prediction, which is the core use case we discuss in our conversation. Subarna talks us through an initial use case of creating an evaluation of polygenic scores, and how that led them to build an ML pipeline and platform. We talk through the tools and tech stack used for the operationalization of their platform, the use of synthetic data, the internal pushback that came along with the changes that were being made, and what’s next for her team and the platform. The complete show notes for this episode can be found at twimlai.com/go/436.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast