The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Scalable Differential Privacy for Deep Learning with Nicolas Papernot - TWiML Talk #134
03 May 2018
In this episode of our Differential Privacy series, I'm joined by Nicolas Papernot, Google PhD Fellow in Security and graduate student in the department of computer science at Penn State University. Nicolas and I continue this week’s look into differential privacy with a discussion of his recent paper, Semi-supervised Knowledge Transfer for Deep Learning From Private Training Data. In our conversation, Nicolas describes the Private Aggregation of Teacher Ensembles model proposed in this paper, and how it ensures differential privacy in a scalable manner that can be applied to Deep Neural Networks. We also explore one of the interesting side effects of applying differential privacy to machine learning, namely that it inherently resists overfitting, leading to more generalized models. The notes for this show can be found at twimlai.com/talk/134.
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast