Your Copilot - KI in der Microsoft 365 Welt verstehen und anwenden
YCP002 YourCopilot Daten-Talk mit Markus Raatz
08 Feb 2024
In dieser Episode sprechen Michael Greth und Markus Raatz, Ceteris AG Berlin, Experte für Big Data und Generative KI, über die Herausforderungen und Möglichkeiten, die sich aus der Verbindung von Big Data und generativer KI ergeben. Sie beleuchten die Komplexität der Datenbereinigung, die Bedeutung von sauberen und gut strukturierten Daten für KI-Anwendungen und die Grenzen aktueller KI-Modelle im Umgang mit Prozessautomatisierung und Datenanalyse. (Zusammenfassung von GPT:VideoSummarizer.ai)Generative KI und Big Data: Die Diskussion eröffnet mit einer Einführung in die Themen Big Data und generative KI. Der Fokus liegt auf der Frage, wie generative KI Big Data verarbeiten kann und welche Erfahrungen Markus Ratz in diesem Bereich gesammelt hat.Datenbereinigung: Ein zentrales Thema ist die Qualität der Daten. Viele Unternehmen glauben, ihre Daten seien sauber und bereit für KI-Anwendungen, doch oft ist das Gegenteil der Fall. Die Bedeutung sauberer Daten für den Erfolg von KI-Projekten wird betont.Prozessautomatisierung vs. KI: Es wird diskutiert, dass viele Ideen zur Automatisierung, die Unternehmen haben, nicht wirklich KI benötigen, sondern durch einfache Prozessautomatisierung realisiert werden können. Die Diskrepanz zwischen den Erwartungen an KI und den tatsächlichen Möglichkeiten wird beleuchtet.Limitationen von KI: Die aktuellen Grenzen von KI-Modellen, insbesondere bei der Prozesssteuerung und Datenanalyse, werden erörtert. Es wird klargestellt, dass große Sprachmodelle wie GPT-3 keine Prozesse steuern oder eigenständig komplexe Datenanalysen durchführen können.Praktische Anwendung von KI: Anhand von Beispielen wird erläutert, wie KI in spezifischen Szenarien sinnvoll eingesetzt werden kann, wie bei der Kategorisierung von E-Mails oder der Unterstützung von Sachbearbeitern durch vorbereitende Analysen.Zukunft der KI in der Datenanalyse: Die Diskussion schließt mit einem Ausblick auf die Entwicklung von KI in der Datenanalyse und wie Unternehmen sich auf die Integration von KI-Technologien vorbereiten können. Dabei wird die Bedeutung von gut definierten und verstandenen Datenmodellen hervorgehoben.Insights basierend auf Zahlen:Die Diskussion zeigt, dass der erfolgreiche Einsatz von KI nicht nur von der Technologie selbst, sondern auch von der Qualität und Struktur der zugrundeliegenden Daten abhängt.Die Notwendigkeit, Daten effektiv zu sammeln, zu bereinigen und zu strukturieren, wird als Voraussetzung für den Nutzen von KI in der Datenanalyse und Prozessautomatisierung betont.Markus Raatz auf LinkedIn : https://www.linkedin.com/in/markus-raatz/Michael Greth auf LinkedIn : https://www.linkedin.com/in/mgreth/
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast