话说在1719,一个叫Paul Halcke的会计,也为专天文学家计算的工程师发现了三个数字,44,117, 240。如果你把这三个数任取两个,求平方和,结果仍旧是一个完全平方数。如果你把这三个数作为一个长方体的三条边,你会发现这个长方体不但所有边是整数,所有面的对角线也是整数。符合这种条件的长方体称为欧拉砖。完美立方体是啥呢:找一个欧拉砖,使体对角线也是整数!数学家至今没有找到这样的三元组,也不能证明它不存在。Saunderson的参数化欧拉砖数公式:如果u, v, w是勾股数(比如,(3,4,5),则以下公式可以产生欧拉砖数组:2009年,发现了完美平行六面体,三条边最小的长度是271, 106, and 103。6条面对角线和4条体对角线全是整数。还找到了两个面是矩形的完美平行六面体。
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now