Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

大老李聊数学(全集)

13. 五个简单但是数学家不能解决的问题(4):内接正方形问题

26 Jun 2017

Description

        请你在纸上任意画一条封闭曲线,形状不论,只要是是封闭,凹凸也不论。不可有自相交。然后请你设法在曲线里画一个内接正方形,也就是正方形四个顶点都在曲线上。你可能稍微实验几下,就能画出。需说明允许这个正方形超出这个闭曲线之外,否则有反例。1911年德国犹太裔数学家Otto Toeplitz提出。正式描述:Let C be a Jordan curve. A polygon P is inscribed in C if all vertices of P belong to C. The inscribed square problem asks:Does every Jordan curve admit an inscribed square?以下是科赫雪花曲线的前四步构造过程,它被证明符合内接正方形猜想:

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.