(此前一次录音质量太差,故重录,因此称为“修复版”)本节目开通了微信公众号,欢迎订阅:请你在一张纸上随便画5个点,里面不要有三点共线的情况,其他都随便画,然后请你尝试在这5个点里随便找4个点连接起来,唯一要求是构成一个凸四边形。然后你很快会发现,是不是随便画5个点,都能找出这样的四个点来构成凸四边形。但是很显然,只有四个点的话,不一定能构成凸四边形。那我现在问你,你能否证明构成凸四边形是否至少就需要5个点呢?如果要构成凸五边形,那至少需要多少个点呢?如要凸11边型又如何呢?这个一般的,平面上至少需要多少个点来构成凸n边型的问题,就是所谓幸福结局问题。1933年,厄多斯和塞凯赖什证明了g(n)的上下界:2016年,有人证明:凸5边型的情况和一个反例:
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now