(文末有每周一题和上周答案)今天跟大家聊一个近期的数学新闻。这个新闻是关于这样一个问题:什么样形状的地砖可以铺满地板不留缝隙?你可能马上能想到正三角形,正方形和正六边形都可以。那如果不是正多边形的呢?这个问题一下子有意思起来,这就牵涉到数学中所谓的密铺问题。密是密密麻麻的的密,铺是铺地板的铺。任意三角形密铺:任意四边形密铺:六边形密铺:15种五边形密铺(含4中特例):非周期性密铺--彭罗斯镶嵌:每周一题 本周题目:能变成一样颜色吗?本期题目取自俄罗斯某数学竞赛题。某岛屿上有一群变色龙。现在有13只绿色的,15只蓝色的和17只红色变色龙。每当两只不同颜色的变色龙靠近时,它们都会变成第三种颜色。那么它们有可能变成同一种颜色吗?上期答案:上周题目是:如下图,有一个半径为2的小圆,沿半径为10的大圆逆时针运动,移动半个圆周后,沿一个半径为5的圆继续运动半个圆周。运动过程中,橙色圆圆心始终保持在其他圆上。为橙色圆扫过的面积多大,即图右阴影部分(包含橙色圆本身)?提示:无需高等数学,耐心将图形分解,分部计算。这期题目比较简单,答案是64pi。答对的朋友有(如有遗漏请见谅):黄亮,今年不买表,李凯峰_3g,Matody 。解法看这个图就明白了:另外还有两位朋友(567和吃喵个鱼)提出这种解法:大圆半周长+小圆半周长,然后乘以小球半径,然后再加上小球的面积。你看,微积分思想就是这样孕育出来的。下周再见!收听“大老李聊数学”音频 关注“大老李聊数学”
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now