“为什么说实数是连续的,能够布满一条数轴?” 相对应的,为什么有理数就不行,也就是有理数是不连续的,有很多断点的?.....前面戴德金拉拉杂杂说了那么多,现在重点来了,他其实就是想说,既然分割点不一定是有理数,那我就定义一种数叫“实数”,每个实数就对应以上的一种对“有理数”的切割,也就是一对左集和右集,唯一对应一个叫实数的数。这个定义重要的一点是,它是根据有理数定义出来的,而没有用到更多前提;第二点,根据切割的定义,我们可以知道切割出来的实数天然具有有序和稠密性,而且它的定义就证明它与直线上的点是对应的,因为实数就是对直线任意位置切割产生的,所以它就是与数轴对应的!而这种“连续”,也被称为“戴德金完备”性,也就是说完整了。戴德金切割图示:订阅“大老李聊数学”公众号
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
Reducing Burnout and Boosting Revenue in ASCs
10 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Erich G. Anderer, Chief of the Division of Neurosurgery and Surgical Director of Perioperative Services at NYU Langone Hospital–Brooklyn
09 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
Dr. Nolan Wessell, Assistant Professor and Well-being Co-Director, Department of Orthopedic Surgery, Division of Spine Surgery, University of Colorado School of Medicine
08 Dec 2025
Becker’s Healthcare -- Spine and Orthopedic Podcast
NPR News: 12-08-2025 2AM EST
08 Dec 2025
NPR News Now
NPR News: 12-08-2025 1AM EST
08 Dec 2025
NPR News Now