[LG] Branched Schrödinger Bridge Matching S Tang, Y Zhang, A Tong, P Chatterjee [Duke-NUS Medical School & Quebec AI Institute] 本文提出了分支薛定谔桥匹配(BranchSBM)框架,通过创新地将分支的广义薛定谔桥问题分解为多个可解的非平衡条件随机最优控制问题,并引入参数化的漂移场和分支特定的生长过程以及多阶段训练算法,成功实现了从单一初始分布到多个不同目标分布的动态、能量感知的分支轨迹学习,显著提升了对细胞分化、药物扰动响应等多目标发散型复杂系统建模的表达能力和准确性。https://arxiv.org/abs/2506.09007
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
#2426 - Cameron Hanes & Adam Greentree
16 Dec 2025
The Joe Rogan Experience
#2425 - Ethan Hawke
11 Dec 2025
The Joe Rogan Experience
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare