Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

BlueDot Narrated

Interpretability in the Wild: A Circuit for Indirect Object Identification in GPT-2 Small

04 Jan 2025

Description

Research in mechanistic interpretability seeks to explain behaviors of machine learning (ML) models in terms of their internal components. However, most previous work either focuses on simple behaviors in small models or describes complicated behaviors in larger models with broad strokes. In this work, we bridge this gap by presenting an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI). Our explanation encompasses 26 attention heads grouped into 7 main classes, which we discovered using a combination of interpretability approaches relying on causal interventions. To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model. We evaluate the reliability of our explanation using three quantitative criteria–faithfulness, completeness, and minimality. Though these criteria support our explanation, they also point to remaining gaps in our understanding. Our work provides evidence that a mechanistic understanding of large ML models is feasible, pointing toward opportunities to scale our understanding to both larger models and more complex tasks. Code for all experiments is available at https://github.com/redwoodresearch/Easy-Transformer.Source:https://arxiv.org/pdf/2211.00593.pdfNarrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.Learn more on the AI Safety Fundamentals website.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.