Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

BlueDot Narrated

Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

04 Jan 2025

Description

Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.Mechanistic interpretability seeks to understand neural networks by breaking them into components that are more easily understood than the whole. By understanding the function of each component, and how they interact, we hope to be able to reason about the behavior of the entire network. The first step in that program is to identify the correct components to analyze.Unfortunately, the most natural computational unit of the neural network – the neuron itself – turns out not to be a natural unit for human understanding. This is because many neurons are polysemantic: they respond to mixtures of seemingly unrelated inputs. In the vision model Inception v1, a single neuron responds to faces of cats and fronts of cars . In a small language model we discuss in this paper, a single neuron responds to a mixture of academic citations, English dialogue, HTTP requests, and Korean text. Polysemanticity makes it difficult to reason about the behavior of the network in terms of the activity of individual neurons.Source:https://transformer-circuits.pub/2023/monosemantic-features/index.htmlNarrated for AI Safety Fundamentals by Perrin WalkerA podcast by BlueDot Impact.Learn more on the AI Safety Fundamentals website.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.