בפרק זה נדבר על מהי Active Learning, כמה זה נפוץ ומתי ניתן לעשות זאת. נדבר על קריטריוני החלטה (Query Strategies): Least Confidence ,Margin Sampling ,Entropy Sampling ונזכיר את ההבדלים במתודולוגיות:Membership Query Synthesis, Stream-Based Selective Sampling, Pool-Based Sampling. לסיום נדון ב-Active Learning כבעיית Reinforcement Learning. קישורים רלוונטים\שהזכרנו: modAL Snorkel Prodigy Active Learning Tutorial REINFORCED ACTIVE LEARNING FOR IMAGE SEGMENTATION
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
#2425 - Ethan Hawke
11 Dec 2025
The Joe Rogan Experience
SpaceX Said to Pursue 2026 IPO
10 Dec 2025
Bloomberg Tech
Don’t Call It a Comeback
10 Dec 2025
Motley Fool Money
Japan Claims AGI, Pentagon Adopts Gemini, and MIT Designs New Medicines
10 Dec 2025
The Daily AI Show
Eric Larsen on the emergence and potential of AI in healthcare
10 Dec 2025
McKinsey on Healthcare
What it will take for AI to scale (energy, compute, talent)
10 Dec 2025
Azeem Azhar's Exponential View