Menu
Sign In Search Podcasts Charts People & Topics Add Podcast API Pricing
Podcast Image

Build Wiz AI Show

LONGREPS: Reasoning Path Supervision for Long-Context Language Models

17 Mar 2025

Description

The provided paper, "Chain-of-Thought Matters: Improving Long-Context Language Models with Reasoning Path Supervision," investigates the effectiveness of Chain-of-Thought (CoT) prompting for large language models dealing with long-context tasks, finding that CoT's benefits generally extend and amplify with longer contexts. To enhance performance in these scenarios, the authors introduce LONGREPS, a novel process-supervised framework that trains models to generate high-quality reasoning paths. This framework employs self-sampling of reasoning paths and a specific quality assessment protocol tailored for long contexts, evaluating both answer correctness and process reliability through source faithfulness and intrinsic consistency. Experimental results demonstrate that LONGREPS significantly improves long-context question answering and generalization capabilities compared to standard outcome supervision.

Audio
Featured in this Episode

No persons identified in this episode.

Transcription

This episode hasn't been transcribed yet

Help us prioritize this episode for transcription by upvoting it.

0 upvotes
🗳️ Sign in to Upvote

Popular episodes get transcribed faster

Comments

There are no comments yet.

Please log in to write the first comment.