This episode explores the foundational concepts of linear regression as a tool for predictive inference and association analysis. It details the Best Linear Prediction (BLP) problem and its finite-sample counterpart, Ordinary Least Squares (OLS), emphasizing their statistical properties, including analysis of variance and the challenges of overfitting when the number of parameters is not small relative to the sample size. The text further introduces sample splitting as a method for robustly evaluating predictive models and clarifies how partialling-out helps in understanding the predictive effects of specific regressors, such as in analyzing wage gaps. Finally, it discusses adaptive statistical inference and the behavior of OLS in high-dimensional settings where traditional assumptions may not hold.DisclosureThe CausalML Book: Chernozhukov, V. & Hansen, C. & Kallus, N. & Spindler, M., & Syrgkanis, V. (2024): Applied Causal Inference Powered by ML and AI. CausalML-book.org; arXiv:2403.02467. Audio summary is generated by Google NotebookLM https://notebooklm.google/The episode art is generated by OpenAI ChatGPT
No persons identified in this episode.
This episode hasn't been transcribed yet
Help us prioritize this episode for transcription by upvoting it.
Popular episodes get transcribed faster
Other recent transcribed episodes
Transcribed and ready to explore now
3ª PARTE | 17 DIC 2025 | EL PARTIDAZO DE COPE
01 Jan 1970
El Partidazo de COPE
Buchladen: Tipps für Weihnachten
20 Dec 2025
eat.READ.sleep. Bücher für dich
BOJ alza 25pb decennale sopra 2%, Oracle vola con accordo Tik Tok, 90 mld eurobond per Ucraina | Morning Finance
19 Dec 2025
Black Box - La scatola nera della finanza
365. The BEST advice for managing ADHD in your 20s ft. Chris Wang
19 Dec 2025
The Psychology of your 20s
LVST 19 de diciembre de 2025
19 Dec 2025
La Venganza Será Terrible (oficial)
Cuando la Ciencia Ficción Explicó el Mundo que Hoy Vivimos
19 Dec 2025
El Podcast de Marc Vidal